The original value of number is 5
The new value of number is 125

Fig. 8.7 | Pass-by-reference with a pointer argument used to cube a variable’s
value. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

Insight: All Arguments Are Passed By Value
* In C++, a/farguments are a/ways passed by value.

» Passing a variable by reference with a pointer
aoes not actually pass anything by reference—a
pointer to that variable Is passed by value and is
copled into the function’s corresponding pointer
parameter.

* The called function can then access that variable
In the caller simply by dereferencing the pointer,
thus accomplishing pass-by-reference.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

Graphical Analysis of Pass-By-Value and Pass-By-Reference

* Figures 8.8-8.9 analyze graphically the execution
of the programs in Fig. 8.6 and Fig. 8.7,
respectively.

* In the diagrams, the values in blue rectangles
above a given expression or variable represent the
value of that expression or variable.

* Each diagram’s right column shows functions
cubeByVvalue (Fig. 8.6) and
cubeByReference (Fig. 8.7) on/ywhen
they’re executing.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Step |: Before main calls cubeByVaTue:

j{nt main() number
int number = 5; 5
number = cubeByValue(number);
}
Step 2: After cubeByVaTue receives the call;
int main(Q) number int cubeByValue(int n)
{ {
int number = 5; > return n * n * n;
} n
number = cubeByValue(number);
} 5

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Step 3: After cubeByVaTue cubes parameter n and before cubeByVaTlue returns to main

int main()

{

int number = 5;

number = cubeByValue(number);

number

5

int cubeByValue(int n)
{ 125
return n * n * n;

int main()

{

int number = 5;
125

number = cubeByValue(number);

number

5

Step 4: After cubeByVaTue returns to main and before assigning the result to number:

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Step 5: After main completes the assignment to number:

int main() number
{
int number = 5; 125
125

number = cubeByValue(number);

Fig. 8.8 | Pass-by-value analysis of the program of Fig. 8.6. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Step |: Before main calls cubeByReference:

int main()

{

int number = 5;

cubeByReference(&number);

number

Step 2: After cubeByReference receives the call and before *nPtr is cubed:

int main()

{

int number = 5;

cubeByReference(&number);

number

5

N

void cubeByReference(int *nPtr)

{

*nPtr = *nPtr * *nPtr * *nPtr;

}
nPtr

L call establishes this pointer

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the

program of Fig. 8.7. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Step 3: Before*nPtr is assigned the result of the calculation 5 * 5 * 5:

int main()

{

int number = 5;

cubeByReference(&number);

number

5

\\\

void cubeByReference(int *nPtr)

{ 125
*nPtr = =nPtr * *nPtr * =nPtr;

nPtr

a
®

Step 4: After *nPtr is assigned 125 and before program control returns to main:

int main()

{

int number = ©;

cubeByReference(&number);

number

125

\\\

/

void cubeByReference(int *nPtr)
1 125
*nPtr = *nPtr * *nPtr * *nPtr;

called funetion modifies caller’s nete

(. variable

a
®

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the

program of Fig. 8.7. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All

Rights Reserved.

Step 5: After cubeByReference returns to main:

int main() number
int number = 5; 125
cubeByReference(&number);

}

Fig. 8.9 | Pass-by-reference analysis (with a pointer argument) of the
program of Fig. 8.7. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays

« Here we present built-in arrays, which are also fixed-size data
structures.

Declaring a Built-In Array

« To specify the type of the elements and the number of

elements required by a built-in array, use a declaration of the
form:

type arrayName[arraySize [;
« The compiler reserves the appropriate amount of memory.
« The arraySize must be an integer constant greater than zero.

* For example, to tell the compiler to reserve 12 elements for
built-in array of 1nts named c, use the declaration

// c is a built-in array of 12 integers
int c[12];

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Accessing a Built-In Array’s Elements

 As with array objects, you use the subscript ([]) operator to
access the individual elements of a built-in array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Initializing Built-In Arrays
You can initialize the elements of a built-in array using an
Initializer list. For example,
intnf] 5] =1{ 50, 20, 30, 10, 40 };
creates a built-in array of five 1nts and initializes them to the
values in the initializer list.

If you provide fewer initializers

— the number of elements, the remaining elements are value initialized—
fundamental numeric types are set to 0, boo 1s are set to false, pointers
are setto nul 1ptr and class objects are initialized by their default
constructors.

If you provide too many initializers a compilation error occurs.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

If a built-in array’s size is omitted from a declaration with an
Initializer list, the compiler sizes the built-in array to the
number of elements in the initializer list.

For example,
int n[] = { 50, 20, 30, 10, 40 },;

creates a five-element array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

% Error-Prevention Tip 8.3

@ Always specify a built-in array’s size, even when
providing an initializer list. This enables the compiler to
ensure that you do not provide too many initializers.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Passing Built-1n Arrays to Functions

» The value of a built-in array’s name is implicitly convertible to
the address of the built-in array’s first element.

— So arrayName is implicitly convertible to &arrayName[0].

* You don’t need to take the address (&) of a built-in array to

pass it to a function—you simply pass the built-in array’s
name.

 For built-in arrays, the called function can modify a//the
elements of a built-in array in the caller—unless the function
precedes the corresponding built-in array parameter with
const to indicate that the elements should nofbe modified.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

