
©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

Insight: All Arguments Are Passed By Value

• In C++, all arguments are always passed by value.

• Passing a variable by reference with a pointer
does not actually pass anything by reference—a
pointer to that variable is passed by value and is
copied into the function’s corresponding pointer
parameter.

• The called function can then access that variable
in the caller simply by dereferencing the pointer,
thus accomplishing pass-by-reference.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.4 Pass-by-Reference with Pointers (cont.)

Graphical Analysis of Pass-By-Value and Pass-By-Reference

• Figures 8.8–8.9 analyze graphically the execution
of the programs in Fig. 8.6 and Fig. 8.7,
respectively.

• In the diagrams, the values in blue rectangles
above a given expression or variable represent the
value of that expression or variable.

• Each diagram’s right column shows functions
cubeByValue (Fig. 8.6) and
cubeByReference (Fig. 8.7) only when
they’re executing.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays
• Here we present built-in arrays, which are also fixed-size data

structures.

Declaring a Built-In Array

• To specify the type of the elements and the number of
elements required by a built-in array, use a declaration of the
form:

type arrayName[arraySize];

• The compiler reserves the appropriate amount of memory.

• The arraySize must be an integer constant greater than zero.

• For example, to tell the compiler to reserve 12 elements for
built-in array of ints named c, use the declaration

// c is a built-in array of 12 integers

int c[12];

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Accessing a Built-In Array’s Elements

• As with array objects, you use the subscript ([]) operator to
access the individual elements of a built-in array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Initializing Built-In Arrays

• You can initialize the elements of a built-in array using an
initializer list. For example,
int n[5] = { 50, 20, 30, 10, 40 };

• creates a built-in array of five ints and initializes them to the
values in the initializer list.

• If you provide fewer initializers

– the number of elements, the remaining elements are value initialized—
fundamental numeric types are set to 0, bools are set to false, pointers
are set to nullptr and class objects are initialized by their default
constructors.

• If you provide too many initializers a compilation error occurs.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

• If a built-in array’s size is omitted from a declaration with an
initializer list, the compiler sizes the built-in array to the
number of elements in the initializer list.

• For example,
int n[] = { 50, 20, 30, 10, 40 };

• creates a five-element array.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

8.5 Built-In Arrays (cont.)

Passing Built-In Arrays to Functions

• The value of a built-in array’s name is implicitly convertible to
the address of the built-in array’s first element.
– So arrayName is implicitly convertible to &arrayName[0].

• You don’t need to take the address (&) of a built-in array to
pass it to a function—you simply pass the built-in array’s
name.

• For built-in arrays, the called function can modify all the
elements of a built-in array in the caller—unless the function
precedes the corresponding built-in array parameter with
const to indicate that the elements should not be modified.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

